The Use of Rapid Prototyping Pelvic Custom Made Prosthesis Associated to Bone Cutting Jigs in Pelvic Tumor Resection

Massimiliano Depaolis, Luca Cevolani1, Carlo Romagnoli1, Matteo Romantini1, Tommaso Frisoni, Cesare Faldini1, Davide Donati1
1Istituto Ortopedico Rizzoli

INTRODUCTION:
The reconstruction of large pelvic bone defect, especially when including the hip joint, is a difficult procedure associated to long operation time and high numbers of early and late complications. Accurate planning in resection is important to achieve clear surgical margins, and shorten the time whatever the type of reconstruction. Most of the methods of reconstruction including modular prosthesis and APC (allograft prosthetic composite) are time consuming leading to high level of blood loss during surgery and increasing risk of deep infection.

Recently the use of additive 3D printing has been developed to achieve custom based segment of bone (trabecular titanium). This technique allows surgeons to make an accurate plan of the resection and anatomical reconstruction. Moreover with the same technique it is possible to plan and perform bone cutting jigs to achieve matched contact between the host bone and the custom implant. The goal of this technique is to obtain first a perfect contact device with simple fixation, thus reducing the time of reconstruction. The aim of this study is to report our preliminary experience about the use of custom made bone cutting jigs and trabecular titanium prosthesis in treatment of bone sarcoma.

METHODS:
From August 2013 to March 2016, we treated six patients for bone pelvic sarcoma. Histology was Ewing sarcoma in four cases and chondrosarcoma in two. Mean age was 28 years (range 15-47). Resection type (according with Enneking and Dunham classification) were II and III in three cases, while type II and partial III in two and partial type I in one (sacro-iliac joint). From high definition CT series of the pelvis a 3D model is obtained by the engineer, thus, the physician indicates the osteotomy lines placement and the type of fixation. Custom-made osteotomy jigs (nylon) and custom-made trabecular titanium prosthesis have been produced through rapid prototyping technology.

Surgical approach is based on tumor size and site. Osteotomy jigs are placed onto the pelvis during surgery to guide the bone cuts. Custom prostheses is fit in the bone gap and fixed by plug and screws previously virtually oriented with previewed type and length. Postoperative CT scan was performed to evaluate the matching between bone and prosthesis. Then, the patients were evaluated clinically and radiographically (x-ray and CT scan) every three months after surgery according to the oncological follow up. Functional evaluation was performed by MSTS score.

RESULTS:
Except for sacro-iliac joint resection, in all patients the hip abductors could be saved during surgery. Wide margins were obtained in all cases and no local recurrences were evident to now. Time of surgery was about four hours on average (range from 180 to 250 minutes). All the Ewing’s sarcoma patients received postoperative chemotherapy. Full weight bearing was allowed at mean time of six months. No postoperative complications were observed in all cases. In one case mobilization of a screw in the pubic area was observed, however, without affecting the stability of the implant.

After a mean follow-up time of 17 months the first four patients could obtain a satisfactory functional result (mean 24/30). Sacro-iliac patient uses supports for walking without evident limping. A mild, self-limiting pain with no need of painkiller is referred by two patients particularly on the ilium tuberosity while seating. Postoperative CT scan showed a good matching between bone and prosthesis in all cases, however, signs of bone ingrowth from the host to the trabecular titanium was present only partially in the first patient performed. The mean follow up was 17 months (range 2-30).

DISCUSSION AND CONCLUSION:
Rapid prototyping is a promising technique able to perform high-precision 3D physical structures by the sequential addition of material layers. From CT data in few weeks it is possible to achieve a device equipped with perfect bone cutting jigs. This early report showed it is possible to apply this technique in this very challenging orthopaedic field. Moreover, short surgical time, adequate margins, low rate of complications, and good functional results can be obtained. More cases and longer follow up is needed to establish this technique as the future standard in reconstruction after pelvic resection as well as in revision total hip arthroplasty surgery.